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Introduction

« Migration is an important component of demographic change at both the national and sub-national levels

* But main source of error in population projections

« Compared to forecasting other drivers of demographic change, slower methodological advance for
migration

* Common approaches: qualitative scenarios or most recent historical data

* No systematic attempt to evaluate the relative strengths and weaknesses of existing migration forecasting
approaches

* Qut-of-sample forecast performance evaluation is rare

* Limited comparison of a wide range of models
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|dentifies broad families of migration forecasting models

* Demographic adjustment methods (Feeney 1973; Plane 1982; Plane 1993; Vandresse 2016; Dion 2017)

— Use adjustment factors to allow OD flows to vary with projected regional population at destination area

* Time-series extrapolation methods (with and without explanatory variables) (Frees 1992; Disney et al 2015;
Schrier and McRae 2000; Raymer, Abel and Rogers 2012; Bernard et al 2020; Fantazzini 2021)

— Assume a continuation of past migration trends while accounting or not for the broader social, economic and demographic
contexts

* Gravity-types of models (Stillwell 1986; Raymer, Bonaguidi, and Valentini 2006; Raymer, Bai, and Smith 2020;
Kim and Cohen 2010; Cameron 2018)

— Spatial interaction and econometric gravity models

— Quantify push and pull factors underpinning bilateral flows
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|dentifies broad families of migration forecasting models

* Bayesian models (Bijak and Wisniowski 2010; Disney et al. 2015; Azose and Raftery 2015; Wisniowski, Bijak, and
Shang 2014; Zhang and Bryant 2020)

— Allows researchers to forecast using different sources of information

* Machine learning (Grossman et al 2022; Nair et al 2020; Carammia, lacus and Wilkin 2022)

— Data-driven approaches that focus on developing algorithms that yield good out-of-sample predictions
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Evaluates their out-of-sample forecast performance using Australian data

* Inter-GCCSA migration flows and rates: Regional Internal Migration Estimates, ABS

— FY 2006/07 to 2021/22
— Includes all 15 GCCSA's = 210 origin-destination GCCSA pairs

* National
- GDP
— Unemployment
e State
— Gross state product
— Mining capital expenditure
— Public sector employment

* GCCSA

— Unemployment rate
— Total number of dwelling units approved
— Residential housing prices
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An evaluation of internal migration forecasting models

Methods: models tested

1. Random walk with drift (ARIMA (0,1,0)): Mij:=a+ M;jiq+ u;
2. Unconstrained autoregressive model of order 1 (ARIMA(1,0,0)): M;jt = po + p1Mijt—1 + us
3. ARMA(1,1) model (ARIMA(1,0,1)): M;;; = po + p1Mijr—1 + up + Oup_y
4. Autoregressive model of order 1 applied on first-difference (ARIMA(1,1,0))
AMj e = po + p1AM;j 1 + u, Where AM;j . = Myj e — Myj o
5. Autoregressive model of order 1 applied on de-trended series (ARIMA(1,0,0) + trend)

Mije = po + leij,t—l + u¢, where Mij,t = M;j: — (ap + a;t)

6. GCCSA-pair specific ARIMA: use Akaike or Bayesian information criterion (AIC/BIC) to determine the number
of lags
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An evaluation of internal migration forecasting models

Methods: forecasting horizon

Cases Training period Out of sample
period

Training and out of sample periods are pre- 2006/07 to 2014/15 2015/16 to 2018/19
COVID (9 years) (4 years)

Training period is pre-COVID; 2006/07 to 2018/19 2019/20 to 2021/22
Out-of-sample period includes COVID (13 years) (3 years)
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Evaluation of internal migration forecasting models

Methods: forecast performance measures

* Focus on out-of-sample forecast performance

* Forecast performance measure

F—A . .
L 7t where F is forecast and A is actual

— Absolute percentage error-based measures: |
t

* Median Absolute Percentage Error (MedAPE)

* Evaluate forecast performance for specific origin-destination GCCSAs
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Results

e Similar performance of extrapolation methods without explanatory variables
— Similar results for flows and rates

* No evidence that extrapolation methods perform worse in forecasting COVID-era OD flows

e Similar results when using an alternative measure of out-of-sample forecast performance
Weighted Mean Absolute Percentage Error

* No evidence that more parsimonious ARIMA models (Frees 1992) unambiguously perform
worse

e Extrapolation methods with controls do not perform better than those without




THE UNIVERSITY
Or e
Next steps

 Investigate to what extent the inclusion of explanatory variables improve
forecast performance

* Big issue: need to forecast the explanatory variables

* Explore different methods to forecast the explanatory variables

* Test other families of models

10
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ARIMA models: forecast performance (flows)
Median APE: Training and forecast periods are both pre-COVID

Methods Year 1 Year2 Year3 Yeard
ARIMA (0,1,0) 9.86% 20.95%  19.47%  22.63%
ARIMA (1,0,0) 9.11% 15.44%  16.68%  17.88%
ARIMA (1,1,0) 10.02% 16.70%  20.07%  23.04%
ARIMA (1,0,1) 9.97% 16.73%  17.29%  18.61%
ARIMA (1,0,0)+ trend 8.66%  16.53%  18.77%  16.71%
GCCSA-pair specific ARIMA 9.76% 16.12%  17.03%  19.00%

Return
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OD Flow (in thousands)
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Actual and Predicted Total Migration Flows (Greater Sydney to Greater Brisbane), 2016 to 2019

Category

— Actual OD flows
— Predicted OD flows
— Predicted OD flows
— Predicted OD flows
— Predicted OD flows

Predicted OD flows
Predicted OD flows
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, ARIMA(1,1,0)

, ARIMA(1,0,1)

, GCCSA-specific ARIMA
, ARIMA(0,1,0)

, ARIMA(1,0,0)+ trend

, ARIMA(1,1,0)

Return
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Year
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ARIMA models: forecast performance (rates)
Median APE: Training and forecast periods are both pre-COVID

Methods Year 1 Year2 Year3 Yeard
ARIMA (0,1,0) 10.20% 17.82%  20.79%  24.77%
ARIMA (1,0,0) 8.20% 15.26%  16.76%  16.33%
ARIMA (1,1,0) 10.32% 16.86%  22.04%  24.71%
ARIMA (1,0,1) 8.73% 14.85%  15.37%  13.39%
ARIMA (1,0,0)+ trend 10.61%  16.32%  19.66%  20.61%
GCCSA-pair specific ARIMA 9.45% 15.17%  16.78%  17.12%

Return
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Category

Actual migration rate

Predicted migration rate, ARIMA(1,1,0)

Predicted migration rate, ARIMA(1,0,1)

Predicted migration rate, GCCSA-specific ARIMA
Predicted migration rate, ARIMA(0,1,0)

Predicted migration rate, ARIMA(1,0,0)+ trend
Predicted migration rate, ARIMA(1,1,0)

Return
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ARIMA models: forecast performance (flows)
Median APE: Training period is pre-COVID; forecast period is during COVID

Methods Year 1 Year2 Year3
ARIMA (0,1,0) 10.29% 15.96%  16.60%
ARIMA (1,0,0) 9.28% 12.40%  18.64%
ARIMA (1,1,0) 10.21% 15.34%  16.77%
ARIMA (1,0,1) 10.16% 11.63%  18.93%

ARIMA (1,0,0)+ trend 12.22% 17.49%  15.63% Return

GCCSA-pair specific ARIMA 9.38% 13.84%  19.43%
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, ARIMA(1,1,0)
, ARIMA(1,0,1)

, GCCSA-specific ARIMA
, ARIMA(0,1,0)

, ARIMA(1,0,0)+ trend

, ARIMA(1,1,0)

Return
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ARIMA models: forecast performance (WMAPE)

Weighted Mean APE: Training and forecast periods are both pre-COVID

Methods Year 1 Year2 Year3 Yeard
ARIMA (0,1,0) 9.44% 12.62%  20.24%  21.90%
ARIMA (1,0,0) 8.58% 12.77%  17.80%  18.00%
ARIMA (1,1,0) 9.37% 12.58%  20.17%  22.12%
ARIMA (1,0,1) 8.95% 14.24%  17.82%  17.94%
ARIMA (1,0,0)+ trend 851%  12.90%  17.99%  18.03%
GCCSA-pair specific ARIMA 9.32% 12.77%  1893%  19.55%

Return
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ARIMA models: forecast performance (WMAPE)

Weighted Mean APE: Training period is pre-COVID; forecast period is during COVID

Methods Year 1 Year2 Year3
ARIMA (0,1,0) 9.25% 12.67%  14.82%
ARIMA (1,0,0) 8.14% 12.12%  17.34%
ARIMA (1,1,0) 8.75% 12.59%  14.85%
ARIMA (1,0,1) 6.82% 12.41%  19.67%
ARIMA (1,0,0)+ trend 8.75%  12.85%  16.86%
GCCSA-pair specific ARIMA 7.96% 12.51%  17.79%

Return
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Parsimonious models

Examine the model performance based on the following assumptions:

Consider an ARIMA (1,0,0) model
» Coefficients are the same for all observations:
M;jt = po + p1M;ji—1 + U
» Coefficients are the same for OD pairs with the same origin GCCSA:
M;j+ = po,i + P1,iM;jt—1 + Uit
» Coefficients are the same for OD pairs with the same destination GCCSA:
Mije = poj + P1jMije-1 + Uje
» Coefficients are OD pair-specific

Mij e = po,ij + P1,ijMije—1 + Uije
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ARIMA models: forecast performance
Median APE: Training and forecast periods are both pre-COVID [Forecast for Year 1]

Same coefficient

ARIMA (0,1,0) ARIMA (1,0,0) ARIMA (1,1,0) ARIMA (1,0,0) + trend

All 11.37% 8.67% 11.30% 8.90%
By origin GCCSA 11.15% 9.29% 10.64% 8.84%
By destination GCCSA 11.17% 9.05% 11.01% 8.99%
By OD GCCSA 9.86% 9.11% 10.02% 8.66%

Return
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ARIMA models: forecast performance
Weighted Mean APE: Training and forecast periods are both pre-COVID [Forecast for Year 1]

Same coefficient

ARIMA (0,1,0) ARIMA (1,0,0) ARIMA (1,1,0) ARIMA (1,0,0) + trend

All 9.17% 9.37% 9.19% 9.34%
By origin GCCSA 9.30% 9.53% 9.39% 9.48%
By destination GCCSA 9.13% 9.35% 9.19% 9.30%
By OD GCCSA 9.44% 8.58% 9.37% 8.51%

Return
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ARIMA models: forecast performance

Median APE: Training period is pre-COVID; forecast period is during COVID

Same coefficient ARIMA (0,1,0) ARIMA (1,0,0) ARIMA (1,1,0) ARIMA (1,0,0) + trend
All 12.97% 10.47% 10.18%
By origin GCCSA 11.65% 11.03% 11.38%
By destination GCCSA 11.41% 11.49% 11.81%
By OD GCCSA 10.29% 9.28% 12.22%

Return

THE UNIVERSITY
OF QUEENSLAND

AUSTRALIA

27



THE UNIVERSITY
OF QUEENSLAND
ARIMA models: forecast performance
Weighted Mean APE: Training period is pre-COVID; forecast period is during COVID

Same coefficient ARIMA (0,1,0) ARIMA (1,0,0) ARIMA (1,1,0) ARIMA (1,0,0) + trend
All 9.09% 9.22% 8.50% 9.15%
By origin GCCSA 9.09% 9.35% 8.45% 9.38%
By destination GCCSA 9.33% 9.53% 8.53% 9.54%
By OD GCCSA 9.25% 8.14% 8.75% 8.75%

Return
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Extrapolation methods with controls

ARDL models: perfect foresight
We estimate the following model:

Mij: = poi + p1,iMiji—1 + BX + u;;
where

» X: controls of interest: (i) GCCSA-level unemployment at origin and destination; (ii) real gross state
product per capita at origin and destination

* Three variations
— Only include GCCSA-level unemployment at origin and destination
— Only include real gross state product per capita at origin and destination

— Include all controls

29
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ARDL models, perfect foresight: forecast performance (flows)
Median APE: Training and forecast periods are both pre-COVID

GCCSA-level unemployment 9.94% 18.17% 18.00% 19.92%

Real gross state product per capita 9.87% 17.21% 20.47% 22.14%

Both controls 10.73% 18.61% 22.99% 23.11%
ARIMA (1,0,0) 9.11% 15.44%  16.68%  17.88%

Return
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ARDL models, perfect foresight: forecast performance (flows)

Median APE: Training and forecast periods are both pre-COVID

GCCSA-level unemployment

(lagged) 12.01%
Real gross state product per capita

9.47%
(lagged)
Both controls (lagged) 13.01%
ARIMA (1,0,0) 9.11%

Return

18.65%

16.29%

22.41%
15.44%

21.39%

20.63%

26.72%
16.68%

19.55%

24.20%

25.53%
17.88%

THE UNIVERSITY
OF QUEENSLAND

AAAAAAAAA

31



THE UNIVERSITY
Or QAN
Appendix

32



THE UNIVERSITY
OF QUEENSLAND
AAAAAAAAA

Methods: models to be tested

Time series extrapolation without 6 variations of ARIMA models
explanatory variables

Time series extrapolation with explanatory 4 approaches to forecast explanatory

variables variables

Spatial interaction models 4 methods to extrapolate multiplicative
components

Bayesian approach 10 variations

Machine learning approach Light gradient boosting algorithm (LGBM)

Return
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Variations of ARIMA models

* Random walk with drift (ARIMA (0,1,0)): M;j: = a + M;j+—1 + u;
* Unconstrained autoregressive model of order 1 (ARIMA(1,0,0)): M;;; = po + p1M;jt—1 + u;
* ARMA(1,1) model (ARIMA(1,0,1)): M;;+ = po + p1Mijt—1 + ur + Our_y
* Autoregressive model of order 1 applied on first-difference (ARIMA(1,1,0))
AM;j: = po + p1AM;j ¢4 + ug, where AM;j . = M — Mjr_q
* Autoregressive model of order 1 applied on de-trended series (ARIMA(1,0,0) + trend)

- Mjj¢ = po + p1Myje—1 + ue, Where M;j = My, — (ag + ast)

* GCCSA-pair specific ARIMA: use Akaike or Bayesian information criterion (AIC/BIC) to determine the number of
lags

Return
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Forecasting explanatory variables: Cases considered

* Perfect foresight: use actual values

e Utilize external forecast, e.g. RBA

* Forecast using ARIMA

* Use Vector Autoregressive Model of order 1 (VAR(1))

Return
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Extrapolation of multiplicative components

Spatial interaction models
« Each origin-destination GCCSA flow is expressed as: M;; = TX0;xD;X0D;;

* T: total no. of internal migrants (total effects)
* 0y, Dj: main effects associated with origin and destination GCCSA's

*  0Dyj: origin-destination interaction effect

*  Which multiplicative component to extrapolate?
* Case 1: total, main, and interaction effects
* Case 2: total and main effects
* Case 3: total effect only
* Case 4: use most recent values of OD flows

Return
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Next steps

» Evaluate the performance of ARIMA models using interstate migration data
* Have longer time series to train the models

* Capture the early 1990s recession in the training model

 Use other error measures
* Mean Absolute Scaled Error (MASE)

* Percent of observed values that fall within 80 and 95 percent confidence intervals
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An evaluation of internal migration forecasting models

Tasks

JUNE

JULY

AUGUST

SEPTEMBER

19 | 26

10

17

24

31

14 | 21

28

4

11

18

25

1. Forecasting results and analysis

1.1. Extrapolation w/o explanatory variables

1.2. Extrapolation w/ explanatory variables

1.3. Spatial interaction

1.4. Bayesian

1.5. Machine learning

2. Conference presentation

2.1. NZ Pop Conference

2.2. IGU symposium (Greece)

3. First draft writing and release

* Two more papers

— Forecast into the future beyond 2023

— Scenario analysis paper, with more explanatory variables
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Forecast models tested Model equation

Random walk with drift (ARIMA (0,1,0)) Mij:=a+ M;jq + u;
Autoregressive model of order 1 (ARIMA(1,0,0)) M;j: = po + p1Mij -1 + Uy
ARMA(1,1) model (ARIMA(1,0,1)) Mijt = po + p1Mij i1 + us + Oupy

AM;je = po + p1AM;j -1 + Uy,

Autoregressive model applied on first-difference
9 PP where AMij,t = Mij,t — Mij,t—l

(ARIMA(1,1,0))
Mije = po + p1Mij g + Uy

Autoregressive model applied on de-trended ..
J PP where Mij,t = Mij,t — (ClO + alt)

series (ARIMA(1,0,0) + trend)

Akaike or Bayesian information criterion

GCCSA-pair specific ARIMA (AIC/BIC) to determine the number of lags
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An evaluation of internal migration forecasting models

Methods: forecasting horizon

Out of sample
period

Cases Training period

Training and out of sample periods are pre- 2006/07 to 2014/15 2015/16 to 2018/19
COVID (9 years) (4 years)

Training period is pre-COVID; 2006/07 to 2018/19 2019/20 to 2021/22
Out-of-sample period includes COVID (13 years) (3 years)



